Inventory and Assessment of Stormwater Infrastructure

Rutgers Cooperative Extension Water Resources Program and New Jersey Department of Environmental Protection

> Jeremiah Bergstrom, ASLA, LLA (e) jbergstrom@envsci.rutgers.edu

> > May 13, 2016

New Jersey Agricultural Experiment Station

Governor Chris Christie • Lt.Governor Kim Guadagno

NJ Home Services A to Z Departments/Agencies FAQs

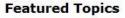
Search All of NJ 🗸

Stormwater in New Jersey

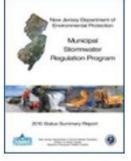
Stormwater Management

- Green Infrastructure in NJ
- Stormwater Management Rule
- Stormwater Management Rule FAQs
- NJ Stormwater BMP Manual
- Maintenance Guidance
- BMP Manual Chapters for Comment
- MTD Certifications and Guidance
- Additional Guidance Documents

Stormwater Permitting


- Municipal Stormwater Regulation
- General Stormwater Permits
- Individual Stormwater Permits
- Permit Applications and Checklists

Program Links


NJ Stormwater.org Contacts

Welcome to NJDEP's stormwater web site for stormwater management professionals and permittees. Here you'll find links to technical information, guidance materials, forms, and applications. General guidance and resources regarding stormwater runoff are also available at <u>www.cleanwaternj.org</u>.

NJStormwater.org Home NJDEP Home NJDEP Online

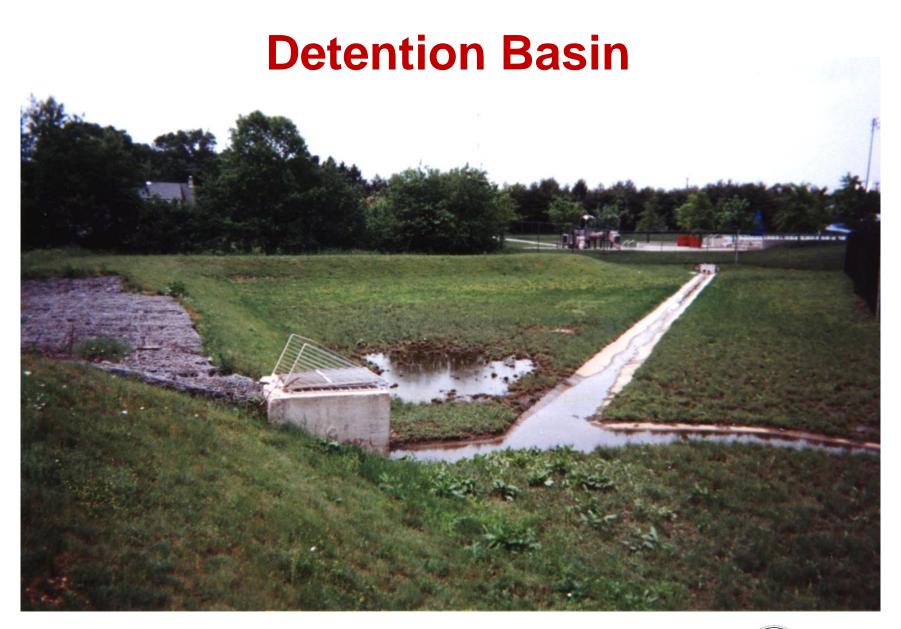
Municipal Stormwater Regulation Program 2010 Status Report Summary

Mars your Eltermouter Require Program

Municipal Stormwater Regulation Program 2010 Barnegat Bay Watersehd Summary Report

Recent News

- Maintenance Guidance
- Stormwater Training
- 2 New and 5 Updated NJ Stormwater BMP Manual Chapters
- Green Infrastructure in NJ
- Snow Removal and Disposal Policy



Identifying and Assessing Stormwater Infrastructure

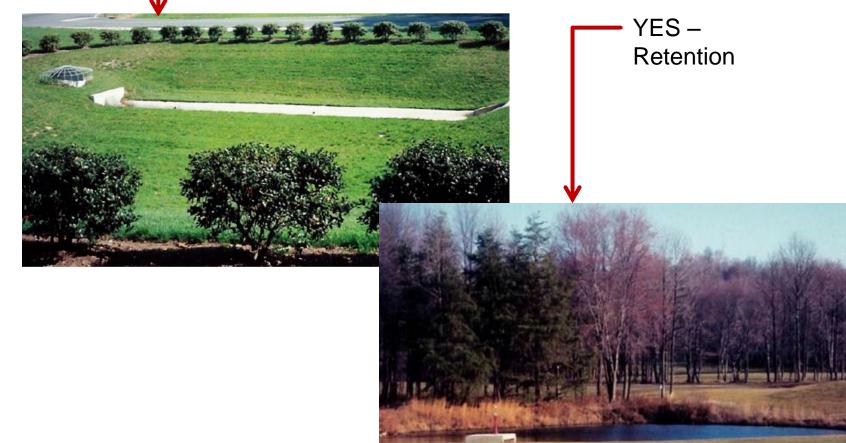
Before an assessment can be completed, stormwater infrastructure must be located and identified such as:

- Detention Basins
- Retention Basins
- Other Stormwater Best Practices Management (BMPs)
- Manufactured Treatment Devices (MTDs)
- Catch Basins
- Stormwater Piping
- Outfalls

Detention Basin

Traditional Retention Basin

Traditional Retention Basin



Detention Basin vs. Retention Basin

Does the basin hold a permanent pool of water?

NO – Detention

Bioretention Systems

Constructed Wetlands

Dry Wells

Infiltration Basin

Pervious Paving Systems

Rooftop Vegetated Cover

Vegetated Filter Strip

Grass Swales

Manufactured Treatment Devices (MTDs)

The Benefits of Stormwater Infrastructure Inventory and Assessment

- ✓ Identify maintenance needs
- ✓ Reduce replacement and repair needs
- ✓ Reduce liability
- Support development of alternative maintenance programs
- ✓ Translate into reduced long-term costs

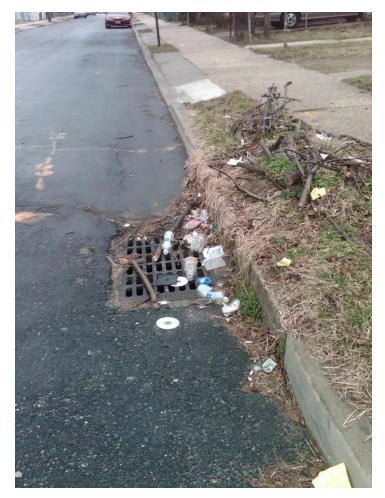
Improved maintenance results

- ✓ Reduced pollution of local waterways
- ✓ Reduced stream channel erosion
- ✓ Reduced flooding
- ✓ Enhanced climate resiliency

State Regulations – Outfall Mapping and Illicit Connections

State Regulations – Outfall Pipe Stream Scouring Remediation

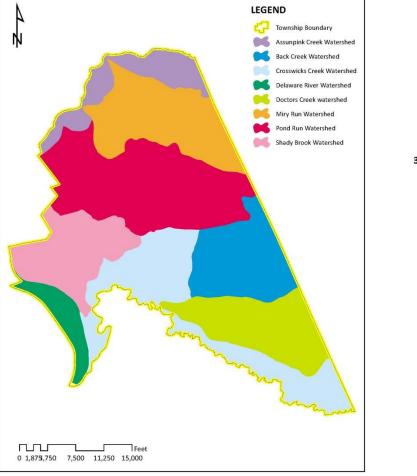
What Other Stormwater Facilities to Inventory

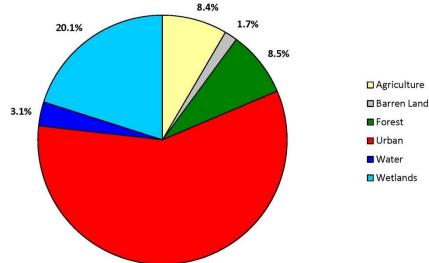

- ✓ Stormwater management basins
- ✓ Outfalls pipes
- ✓ Subsurface retention/detention systems
- ✓ Manufactured treatment devices (MTDs)
- ✓ Green infrastructure

Beyond State Regulations – Mapping Catch Basins and Piping

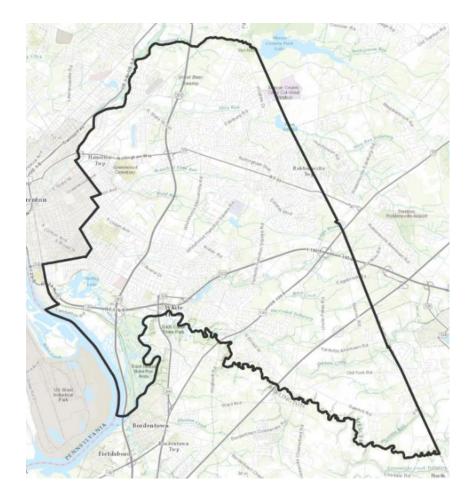
Information Needed To Begin An Inventory

- ✓ Type of Stormwater Facility
- ✓ Coordinates in accordance with NJDEP GIS
 Protocol
- ✓ Road Name
- ✓ Owner
- ✓ Tax Map Number
- ✓ Block and Lot
- ✓ Unique Identification Number


Mapping



Inventory and Assessment Example – Hamilton Township



58.2%

Hamilton Township

Inventory Forms

RUTGERS New Jersey Agricultural Experiment Station

Stormwater Infrastructure Assessment Program Stormwater Basin Inspection Checklist

ENERAL INFORMATION			Site ID:			
Name(s) person inspecting the basin:	ame(s) person inspecting the basin:			Date:		
ocation Address and Cross Streets:		Т	Watershed:			
Name of Creek, Stream, or area into which the basin discharges:		es:	Property Owner / Tax Parcel Block & Lot:			
Contact information:						
STRUCTURAL COMPONENTS						
Basin description, size and depth:			Is the basin accessible to maintain? Yes / No Is it maintained: Mowed, clear of woody plants, inlet/outlet blockages?			
Number of inlets:			Outlet diamete	r:		
GENERAL OBSERVATIONS	YES	NO		NOTES/REMARKS		
1) Any reports on the basin not functioning?				NOTES/REWARKS		
	-		_			

2) Are there any unauthorized or malfunctioning	
structures in the basin?	
3) Are there concrete low flow channels. Is the	
water entering the basin directly exiting the basin	
outlet without coming in contact with the basin	
bottom soil and vegetation?	
4) Is there standing water or evidence of standing	
water in the basin?	
INLET/S	
1) Signs of breakage, damage, corrosion or rusting	
of inlet structure/pipe?	
2) Debris or sediment accumulation in or around	
the inlet clogging the inlet opening/pipe?	
3) Signs of erosion, scour or gullies; rock or	
vegetation above or around the inlet structure?	
4) Tree roots, woody vegetation growing close to	
or through the inlet structure or a situation	
impacting the structure's integrity?	
5) If the inlet has a pretreatment structure (trash	
rack, forebay) is it filled w/ debris or sediment?	
BASIN	
1) Accumulation of debris or litter within basin?	
2) Exposed dirt or earth visible, are there areas	
without vegetation or where turf is damaged?	
3) Excess sediment accumulation in the basin?	
4) Basin walls/embankment eroded, slumping,	
caved or being undermined?	

Stormwater Infrastructure Assessment Program Stormwater Outfall Inspection Checklist

GENERAL INFORMATION		Site ID:
Name(s) person inspecting the outfall:		Date:
Location Address and Cross Streets:	Watershed:	
Name of Creek, Stream, or area into which the outfall discharges:	Property Owner / Tax Parcel B	Block & Lot:
Contact information:		
STRUCTURAL COMPONENTS		
Outfall description:	Is the outfall accessible to mai Is it maintained: Mowed, clea	
Outfall Material:	i sin maintaineu. Moweu, tiea	or woody plants, blockages:
Weather over past 24 Hours:	Outlet diameter:	

GENERAL OBSERVATIONS	YES	NO	NOTES/REMARKS
1) Any reports on the outlet not functioning?			
2) Are there any unauthorized or malfunctioning			
structures connected to the outfall?			

EPA Fact Sheet

United States C Environmental Protection

Office of Water Washington, D.C. 832-F-99-046 September 1999

\$EPA

Storm Water Management Fact Sheet Visual Inspection

DESCRIPTION

Visual inspection is a Best Management Practice (BMP) in which members of a Storm Water Pollution Prevention Team visually examine material storage and outdoor processing areas, the storm water discharges from such areas, and the environment in the vicinity of the discharges, to identify contaminated runoff and its possible sources.

In a visual inspection, storm water runoff may be examined for the presence of Doating and suspended materials, oil and grease, discoloration, turbidity, odor, or foam; and storage areas may be inspected for leaks from containers, discolorations on the storage area floor, or other indications of a potential for pollutants to contaminate storm water runoff.

Visual inspections may indicate the need to modify a facility to reduce the risk of contaminating runoff.

APPLICABILITY

The U.S. EPA has recognized visual inspection as a baseline BMP for over 10 years. Its implementation, however, has been sporadic. Implementation may increase as more facilities develop Storm Water Pollution Prevention Plans. Implementation may also increase as facility management recognizes visual inspection to be effective both in protecting water quality and in reducing costs.

ADVANTAGES AND DISADVANTAGES

Visual inspections are an effective way to identify a variety of problems. Correcting these problems can improve the water quality of the receiving water.

Limitations associated with visual inspections include the following:

- Visual inspections are effective only for those areas clearly visible to the human eye.
- The inspections need to be performed by qualified personnel.
- To be effective, inspections must be carried out routinely. This requires a corporate commitment to implementing them.
- Inspectors need to be properly motivated to perform a thorough visual inspection.

KEY PROGRAM COMPONENTS

Visual inspections for signs of storm water contamination should be performed routinely. Flows should be observed during dry periods to determine the presence of any stains, sludge, odors, and other abnormal conditions.

Visual inspections should also be made at all storm water discharge outlet locations during the first hour of a storm event, once runoff has reached its maximum flow rate. Inspectors should examine the discharge for the presence of floating and suspended materials, oil and grease, discoloration, turbidity, foam, or odor.

Outfall #	9		Photograph	n #	-		Date: _	
Location:								
Weather: ai	r temp.:	_°C	rain: Y	Ν	sunn	Y	cloudy	
Outfall flow	rate estimate:	L/sec						
Known indu	strial or comme	rcial uses in dr	ainage area?		Y N			
Describe: _								
PHYSICAL	OBSERVAT	IONS						
Odor:	none	sewage	sulfide	oil	gas	rancid-sour	other:	
Color:	none	yellow	brown		green	gray	other:	
Turbidity:	none	cloudy	opaque					
Floatables:	none	petroleum s	heen		sewage	other:		_ (collect sample)
Deposits/st	tains:	none	sediment		oily	describe:		_ (collect sample)
Vegetation	conditions:	normal	excessive g	growth		inhibited gro	wth	
	extent:					_		
Damage to	outfall structu	res:						
	identify structu	ire:						
	damage:	none / cor	icrete cracking	g / ci	oncrete spa	alling / peeli	ng paint /	corrosion
	other damage.					<u></u>		
	extent:							

Source: Pitt, et. al, 1992.

FIGURE 1 VISUAL INSPECTION WORKSHEET

REFERENCES

- California Environmental Protection Agency, 1992. Staff Proposal for Modification to Water Quality Order No. 91-13 DWQ Waste Discharge Requirements for Dischargers of Storm Water Associated with Industrial Activities, Draft Wording, Monitoring Program and Reporting Requirements. AI
- Pitt R., D. Barbe, D. Adrian, and R. Field, 1992. Investigation of Inappropriate Pollutant Entries into Storm Drainage Systems-A Users Guide. U.S. EPA, Edison, NJ.

- 3. U.S. EPA, 1981. NPDES BMP Guidance Document.
 - U.S. EPA. Pre-print, 1992. Storm Water Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices. EPA 832-R-92-006.

ADDITIONAL INFORMATION

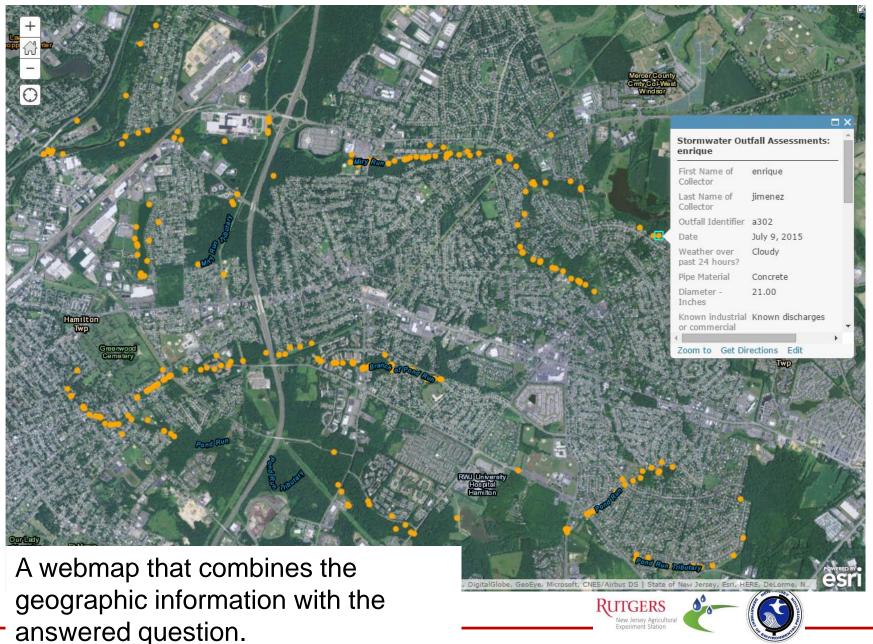
Center for Watershed Protection Tom Schueler 8391 Main Street Ellicott City, MD 21043


Assessment Tool Esri Collector Application

- Free mobile application
- No equipment to purchase
- Android and Apple Compatible
- Easy to use
- Easy to upload and share
- Available offline

Using the Collector Application in four simple steps

1) Launch Collector 2) Choose Application 3) Tag Location


Image: Contract of the second of the seco

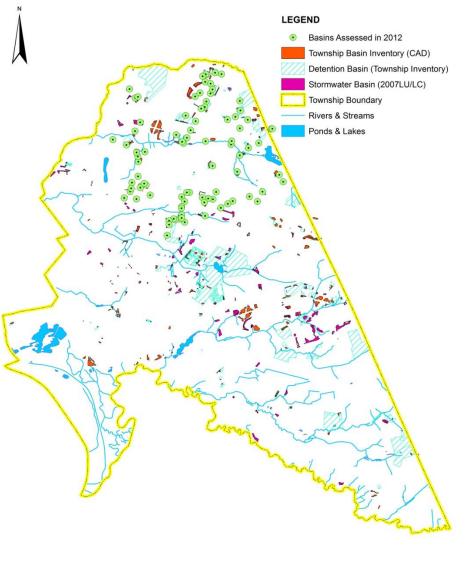
4) Answer Questions

	t⊚ ¢
Stormwater Basins: No valid location	
COLLECTOR'S FIRST NAME	
COLLECTOR'S LAST NAME	
SITE IDENTIFICATION	
DATE	
September 15, 2015	() Use current
ADDRESS	
WATERSHED	
NAME OF CREEK, STREAM, OR AREA INTO WHICH THE BASIN DISCHAGES	
BLOCK NUMBER	
LOT NUMBER	
CONTACT INFORMATION	
LAND USE THAT DRAINS TO BASIN	
PROXIMITY TO RESIDENTIAL HOUSING	

The Result

Hamilton Township, Mercer County

- Conduct complete inventory and assessment of stormwater management basins in Hamilton Township
- Prepare a comprehensive GIS database of stormwater infrastructure
- Implement detention basin maintenance training, inspection, and monitoring program
- Execute detention basin repair, rehabilitation, and enhancement projects



Hamilton Township

- The locations of the basins were compiled into a GIS.
- Five maps were created based on the assessment results:
 - 1. Basins that require cleaning
 - 2. Basins that require maintenance
 - 3. Basins that require inlet & outlet repair
 - 4. Basins with standing water
 - 5. Priority basins (immediate attention needed)

Hamilton Township

- Mapped 312 detention basins
- 142 require cleaning
- 153 require maintenance
- 116 require repair on inlets or outlets
- 80 were found to have standing water.
- Mapped *Priority Basins* needing cleaning, maintenance, or repair needs.
- 111 basins were found to be in good condition.

QUESTIONS?

Common Concerns for Wet Ponds

- Embankment and outlet stabilization
- ✓ Outlet blockages
- ✓ Sedimentation
- ✓ Floatables and Debris
- ✓ Lack of shoreline buffer
- ✓ Excessive algal growth

Shoreline Buffer

Excessive Algal Growth

Wet Pond – Good Condition

Common Concerns with Stormwater Infrastructure

- 1. Embankment and outlet stabilization
- 2. Sedimentation
- 3. Outlet blockages
- 4. Broken or clogged low-flow channels
- 5. Standing water or wet soils
- 6. Floatables and debris
- 7. Weeds or woody vegetation

Embankment and Outlet Stabilization

Embankment Destabilization

Outlet Destabilization

Sedimentation

Accumulation of sediment in basin

Outlet Blockage

Outlet blockage by debris

Outlet blockage by sediment

Broken or Clogged Low-Flow Channels

Broken low-flow channel

Clogged low-flow channel

Standing Water or Wet Soils

Standing water in detention basin

Floatables and Debris

Accumulation of floatables in basin

Basin is a dumping ground

Weeds and Woody Vegetation

Woody vegetation in basin

Invasive species have overtaken the

basin Rutgers New Jersey Agricultural Experiment Station

Stormwater Outfalls

Common Concerns with Stormwater Outfalls

- ✓ Stream erosion or scouring resulting from discharge
- ✓ Poor pipe condition
- Discharge of floatables
- ✓ Discharge of excessive sediment
- ✓ Color of the water discharging
- Discharging during dry weather conditions
- ✓ Outfall overgrown with vegetation
- Structural integrity of headwall or other supporting structure

Stream erosion or scouring resulting from discharge

Outfall is causing erosion

Outfall is causing scouring

Poor Pipe Condition

Crumbling concrete outfall pipe or pipe sections falling into stream

RUTGERS

Discharge of Floatables

Accumulation of floatables from outfall

Garbage in the stream

Discharge of excessive sediment

Outfall pipes can discharge excessive sediment into the local waterway

Color of the water discharging

Stormwater seems very cloudy – could be a cross connection with sanitary sewer pipe

Discharging during dry weather

Could be an illicit connection – water quality testing should be done

Outfall overgrown with vegetation

Outfall capacity is limited due to overgrowth of vegetation

Structural integrity of headwall

Concrete headwall is crumbling

E-learning Tool Coming Soon!

- An interactive E-learning tool was developed for municipal officials as part of a grant awarded by the New Jersey Department of Environmental Protection (NJDEP).
- The tool uses workshop material to showcase how municipalities can comply with the new MS4 permits when mapping their stormwater infrastructure.
- <u>http://water.rutgers.edu/E-</u> learning.html

RUTGERS

Questions?

Jeremiah Bergstrom, ASLA, LLA (e) jbergstrom@envsci.rutgers.edu

